Recent studies show that even highly biased dense networks contain an unbiased substructure that can achieve better out-of-distribution (OOD) generalization than the original model. Existing works usually search the invariant subnetwork using modular risk minimization (MRM) with out-domain data. Such a paradigm may bring about two potential weaknesses: 1) Unfairness, due to the insufficient observation of out-domain data during training; and 2) Sub-optimal OOD generalization, due to the feature-untargeted model pruning on the whole data distribution. In this paper, we propose a novel Spurious Feature-targeted model Pruning framework, dubbed SFP, to automatically explore invariant substructures without referring to the above weaknesses. Specifically, SFP identifies in-distribution (ID) features during training using our theoretically verified task loss, upon which, SFP can perform ID targeted-model pruning that removes branches with strong dependencies on ID features. Notably, by attenuating the projections of spurious features into model space, SFP can push the model learning toward invariant features and pull that out of environmental features, devising optimal OOD generalization. Moreover, we also conduct detailed theoretical analysis to provide the rationality guarantee and a proof framework for OOD structures via model sparsity, and for the first time, reveal how a highly biased data distribution affects the model's OOD generalization. Extensive experiments on various OOD datasets show that SFP can significantly outperform both structure-based and non-structure OOD generalization SOTAs, with accuracy improvement up to 4.72% and 23.35%, respectively.
translated by 谷歌翻译
Network pruning is a promising way to generate light but accurate models and enable their deployment on resource-limited edge devices. However, the current state-of-the-art assumes that the effective sub-network and the other superfluous parameters in the given network share the same distribution, where pruning inevitably involves a distribution truncation operation. They usually eliminate values near zero. While simple, it may not be the most appropriate method, as effective models may naturally have many small values associated with them. Removing near-zero values already embedded in model space may significantly reduce model accuracy. Another line of work has proposed to assign discrete prior over all possible sub-structures that still rely on human-crafted prior hypotheses. Worse still, existing methods use regularized point estimates, namely Hard Pruning, that can not provide error estimations and fail reliability justification for the pruned networks. In this paper, we propose a novel distribution-lossless pruning method, named DLLP, to theoretically find the pruned lottery within Bayesian treatment. Specifically, DLLP remodels the vanilla networks as discrete priors for the latent pruned model and the other redundancy. More importantly, DLLP uses Stein Variational Inference to approach the latent prior and effectively bypasses calculating KL divergence with unknown distribution. Extensive experiments based on small Cifar-10 and large-scaled ImageNet demonstrate that our method can obtain sparser networks with great generalization performance while providing quantified reliability for the pruned model.
translated by 谷歌翻译
基于常规卷积网络的视频超分辨率(VSR)方法具有很强的视频序列的时间建模能力。然而,在单向反复卷积网络中的不同反复单元接收的输入信息不平衡。早期重建帧接收较少的时间信息,导致模糊或工件效果。虽然双向反复卷积网络可以缓解这个问题,但它大大提高了重建时间和计算复杂性。它也不适用于许多应用方案,例如在线超分辨率。为了解决上述问题,我们提出了一种端到端信息预构建的经常性重建网络(IPRRN),由信息预构建网络(IPNet)和经常性重建网络(RRNET)组成。通过将足够的信息从视频的前面集成来构建初始复发单元所需的隐藏状态,以帮助恢复较早的帧,信息预构建的网络在不向后传播之前和之后的输入信息差异。此外,我们展示了一种紧凑的复发性重建网络,可显着改善恢复质量和时间效率。许多实验已经验证了我们所提出的网络的有效性,并与现有的最先进方法相比,我们的方法可以有效地实现更高的定量和定性评估性能。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译